Unified Architecture Adaptation for Compressed Domain Semantic Inference

IEEE Transactions on Circuits and Systems for Video Technology(2023)

引用 2|浏览14
暂无评分
摘要
Advances in both lossy image compression and semantic content understanding have been greatly fueled by deep learning techniques, yet these two tasks have been developed separately for the past decades. In this work, we address the problem of directly executing semantic inference from quantized latent features in the deep compressed domain without pixel reconstruction. Although different methods have been proposed for this problem setting, they either are restrictive to a specific architecture, or are sub-optimal in terms of compressed domain task accuracy. In contrast, we propose a lightweight, plug-and-play solution which is generally compliant with popular learned image coders and deep vision models, making it attractive to vast applications. Our method adapts prevalent pixel domain neural models that are deployed for various vision tasks to directly accept quantized latent features (other than pixels). We further suggest training the compressed domain model by transferring knowledge from its corresponding pixel domain counterpart. Experiments show that our method is compliant with popular learned image coders and vision task models. Under fair comparison, our approach outperforms a baseline method by a) more than 3% top-1 accuracy for compressed domain classification, and b) more than 7% mIoU for compressed domain semantic segmentation, at various data rates.
更多
查看译文
关键词
Learned image compression,compressed domain semantic inference,compressed representation,deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要