Nanosurface Texturing for Enhancing the Antibacterial Effect of Biodegradable Metal Zinc: Surface Modifications

SSRN Electronic Journal(2023)

引用 3|浏览2
暂无评分
摘要
Zinc (Zn) as a biodegradable metal has attracted research interest for bone reconstruction, with the aim of eliminating the need for a second removal surgery and minimizing the implant-to-bone transfer of stress-shielding to maintain bone regeneration. In addition, Zn has been shown to have antibacterial properties, particularly against Gram-negative bacteria, and is often used as a surface coating to inhibit bacterial growth and biofilm formation. However, the antibacterial property of Zn is still suboptimal in part due to low Zn ion release during degradation that has to be further improved in order to meet clinical requirements. This work aims to perform an innovative one-step surface modification using a nitric acid treatment to accelerate Zn ion release by increasing surface roughness, thereby endowing an effective antimicrobial property and biofilm formation inhibition. The antibacterial performance against Staphylococci aureus was evaluated by assessing biofilm formation and adhesion using quantitative assays. The surface roughness of acid-treated Zn (Ra similar to 30 nm) was significantly higher than polished Zn (Ra similar to 3 nm) and corresponded with the marked inhibition of bacterial biofilm, and this is likely due to the increased surface contact area and Zn ion accumulation. Overall, surface modification due to nitric acid etching appears to be an effective technique that can produce unique morphological surface structures and enhance the antibacterial properties of biodegradable Zn-based materials, thus increasing the translation potential toward multiple biomedical applications.
更多
查看译文
关键词
anti-bacterial,biodegradable Zn,infection,interfacial morphology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要