Impact of the new 12C+12C reaction rate on presupernova nucleosynthesis*

Chinese Physics C(2023)

引用 0|浏览15
暂无评分
摘要
Abstract The 12C+12C reaction rate plays an essential role in stellar evolution and nucleosynthesis. Nevertheless, the uncertainties of this reaction rate are still large. We calculate a series of stellar evolution models with the near solar abundance from the zero-age main-sequence through presupernova stages for initial masses of 20 M to 40 M . The 12C+12C reaction rates from two different studies are used in our investigation. One is the rate obtained using the Trojan Horse Method (THM) by Tumino et al. [Nature 557(7707), 687 (2018)], and the other was obtained by Mukhamedzhanov et al. [Physical Review C 99(6), 064618 (2019)] (Muk19). Then, comparisons of the nucleosynthesis and presupernova isotopic abundances are conducted. In particular, we find that in the C burning shell, models with the THM produce a smaller amount of 23Na and some neutron-rich isotopes than Muk19. The difference in the abundance ratios of Na/Mg, S/Mg, Ar/Mg, and K/Mg between the two models are apparent. We compare Na/Mg obtained from our theoretical presupernovae models with Na/Mg in stellar atmospheres observed with high-resolution spectra as well as from the latest galactic chemical evolution model. Although Na/Mg obtained using the THM is within 2σ of the observed stellar ratio, the theoretical uncertainty on Na/Mg introduced by the uncertainty of the 12C+12C reaction rate is almost equivalent to the standard deviation of astronomical observations. Therefore, a more accurate 12C+12C reaction rate is crucial.
更多
查看译文
关键词
reaction,<sup>12</sup>c+<sup>12</sup>c
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要