Comparison of saturated hydraulic conductivity estimated by empirical, hydraulic and numerical modeling methods at different scales in a coastal sand aquifer in Northern Ireland

ENVIRONMENTAL EARTH SCIENCES(2023)

引用 0|浏览4
暂无评分
摘要
Hydraulic conductivity is one of the most challenging hydrogeological properties to appropriately measure due to its dependence on the measurement scale and the influence of heterogeneity. This paper presents a comparison of saturated hydraulic conductivities ( K ) determined for a quasi-homogeneous coastal sand aquifer, estimated using eight different methodologies, encompassing empirical, hydraulic and numerical modeling methods. The geometric means of K, determined using 22 methods, spanning measurement scales varying between 0.01 and 100 m, ranged between 3.6 and 58.3 m/d. K estimates from Cone Penetration Test (CPT) data proved wider than those obtained using the other methods, while various empirical equations, commonly used to estimate K from grain-size analysis and Tide-Aquifer interaction techniques revealed variations of up to one order of magnitude. Single-well tracer dilution tests provided an alternative for making preliminary estimates of K when hydraulic gradients were known. Estimates from the slug tests proved between 1.2 and 1.6 times larger than those determined from pumping tests which, with one of the smallest ranges of variation, provided a representative average K of the aquifer as revealed by numerical modeling. By contrast, variations in K with depth could be detected at small scales (~ 0.1 m). Hydraulic Profiling Tool (HPT) system data indicated that K decreases with depth, which was supported by the numerical model results. No scale effect on K was apparent when considering the ensemble of results, suggesting that hydraulic conductivity estimates do not depend on the scale of measurement in the absence of significant aquifer heterogeneities.
更多
查看译文
关键词
Hydraulic conductivity,Coastal aquifer,Hydraulic tests,Numerical modeling,Scale effects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要