N-acetylcysteine protects against neurodevelopmental injuries induced by methylmercury exposure during pregnacy and lactation

Research Square (Research Square)(2022)

引用 0|浏览3
暂无评分
摘要
Abstract As an extremely dangerous environmental contaminant, methylmercury (MeHg) results in detrimental health effects in human brain nervous system, one of its main targets. However, as a developmental toxicant, the brain of offspring is vulnerable to MeHg during pregnancy and lactation exposure. Unfortunately, mechanisms of neurodevelopmental injuries induced by MeHg have not been fully elucidated. N-acetylcysteine (NAC) has been used for several decades as an antioxidant to antagonize oxidative stress. However, the molecular mechanisms of NAC alleviating MeHg-induced neurodevelopmental toxicity are not clear. Here, for evaluation of the dose-dependent effects of MeHg exposure on neurodevelopmental injuries of offspring, and the possible protective effects of NAC, the pregnant female mice were exposed to MeHg and NAC from gestational day 1 (GD1) to postnatal day 21 (PND21). Our results indicated that administering MeHg caused behavioral impairment and neuronal injuries in the cerebral cortex of newborn mice. MeHg dose-dependently caused reactive oxygen species (ROS) overproduction and oxidative stress aggravation, together with expression of Nrf2, HO-1, Notch1, and p21 up-regulation, and CDK2 inhibition. NAC treatment dose-dependently antagonized MeHg-induced oxidative stress that may contribute to alleviate the neurobehavioral and neurodevelopmental impairments. These results give insight into that NAC can protect against MeHg-induced neurodevelopmental toxicity by its antioxidation capacity.
更多
查看译文
关键词
neurodevelopmental injuries,methylmercury exposure,pregnacy,lactation,n-acetylcysteine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要