Effects of coal-fired power plants on soil microbial diversity and community structures

Journal of Environmental Sciences(2024)

引用 1|浏览21
暂无评分
摘要
Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants. However, the effects of coal-fired power plants on soil microbial communities have received little attention through atmospheric pollutant deposition and coal-stacking. Here, we collected the samples of power plant soils (PS), coal-stacking soils (CSS) and agricultural soils (AS) around three coal-fired power plants and background control soils (BG) in Huainan, a typical mineral resource-based city in East China, and investigated the microbial diversity and community structures through a high-throughput sequencing technique. Coal-stacking significantly increased ( p < 0.05) the contents of total carbon, total nitrogen, total sulfur and Mo in the soils, whereas the deposition of atmospheric pollutants enhanced the levels of V, Cu, Zn and Pb. Proteobacteria, Actinobacteria, Thaumarchaeota, Thermoplasmata, Ascomycota and Basidiomycota were the dominant taxa in all soils. The bacterial community showed significant differences ( p < 0.05) among PS, CSS, AS and BG, whereas archaeal and fungal communities showed significant differences ( p < 0.01) according to soil samples around three coal-fired power plants. The predominant environmental variables affecting soil bacterial, archaeal and fungal communities were Mo-TN-TS, Cu-V-Mo, and organic matter (OM)-Mo, respectively. Certain soil microbial genera were closely related to multiple key factors associated with stacking coal and heavy metal deposition from power plants. This study provided useful insight into better understanding of the relationships between soil microbial communities and long-term disturbances from coal-fired power plants.(c) 2023 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要