Effects of Eulerian current, Stokes drift and wind while simulating surface drifter trajectories in the Baltic Sea

Oceanologia(2023)

Cited 1|Views4
No score
Abstract
The simulation of Lagrangian drift is an important task in applications such as dispersion of pollutants, larvae and search and rescue activities. In this study, the Eulerian current, Stokes drift and wind effect on the simulation of observed drifters were analysed. The Lagrangian OceanParcels model was used, and the surface trajectories were assessed by comparison with 9 GPS drifter trajectories in the Gulf of Finland, Gulf of Riga and Lithuanian coast. The Normalised Cumulative Lagrangian Separation (NCLS) distance between the simulated and the satellite-tracked drifter trajectories, and the mean absolute error (MAE) were used as comparison metrics. The present study suggests the need to consider the Stokes drift and the wind factor in addition to the modelled Eulerian currents to obtain a better description of the trajectories of particles. By making these considerations, the OceanParcels model could adequately simulate particle trajectories in the sub-basins within the Baltic Sea. The realized model tests showed that motion of surface drifters are strongly controlled by the Stokes drift when the significant wave height is > 1 m, whereas the wind component and the Eulerian currents are crucial when the significant wave height is < 0.6 m or the wave (Stokes drift) directions do not match the wind direction.& COPY; 2023 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).
More
Translated text
Key words
Litter modelling,OceanParcels framework,Surface drifter trajectories,Stokes drift,Wind effect
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined