Tectonic evolution and global crustal architecture of the Variscan crust of the European Variscan belt constrained by geophysical data

crossref(2023)

Cited 0|Views5
No score
Abstract
<p>Comprehensive set of seismic and potential field data from the whole European Variscan belt is used to interpret the structure and evolution of the European Variscides as defined by Mart&#237;nez Catal&#225;n et al. (2021). The gravity data show the presence of high amplitude, short-wavelength gravity anomalies correlated with the outcrops of eclogites, ultramafic rocks and ophiolites delineating the main body of the Mid-Variscan Allochthon (MVA) and the Devonian Mid-Variscan suture (MVS). The medium amplitude and elongated long-wavelength gravity highs, aligned parallel to the Variscan structural grain, correspond to the low-grade Proterozoic rocks of the MVA and Devonian arc &#8211; back-arc system. On the other hand, the short wavelength negative gravity anomalies developed in the central part of the belt coincide with Carboniferous (330&#8211;310 Ma) per- to meta-aluminous magmatic bodies. The magnetic data show two belts correlated with Carboniferous Rhenohercynian and Devonian Mid-Variscan magmatic arc granitoids. The Rhenohercynian and Mid-Variscan subduction systems are also well-imaged by moderately dipping primary reflectors in reflection seismic lines. Younger moderately dipping reflectors in the upper-middle crust coincide with outcrops of Carboniferous detachments, limiting granite plutons and core complexes along-strike the core of the Variscan orogeny. Deep crustal reflectors are considered as an expression of lower crustal flow resulting from extensional re-equilibration of the previously thickened Variscan crust. A P-wave velocity logs synthesis shows a high-velocity cratonic crust surrounding a thin Variscan orogenic crust defined by low-velocity lower and middle crusts. The latter crustal type coincides with regional outcrops of 330&#8211;310 Ma per- to meta- aluminous granitoids and associated gravity lows along-strike the belt. All these data are used to define the primary polarity of Devonian subduction systems defining the European Variscan belt (Schulmann et al., 2022) and discuss the Carboniferous extension forming specific structure of the Variscan crust. This geodynamic evolution is integrated into a paleomagnetically constrained model of the movements of continental plates and intervening oceans (Edel et al., 2018; Mart&#237;nez Catal&#225;n et al., 2021).</p> <p>REFERENCES:</p> <p>Catalan, J.R.M., Schulmann, K. and Ghienne, J.F., 2021. The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth-Science Reviews, 220, 1&#8211;65.</p> <p>Edel, J.B., Schulmann, K., Lexa, O. and Lardeaux, J.M., 2018. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-science reviews, 177, 589-612.</p> <p>Schulmann, K., Edel, J.B., Catal&#225;n, J.R.M., Mazur, S., Guy, A., Lardeaux, J.M., Ayarza, P. and Palomeras, I., 2022. Tectonic evolution and global crustal architecture of the European Variscan belt constrained by geophysical data. Earth-Science Reviews, 234, &#160;p.104195.</p>
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined