We present space and ground-based multi-instrument observations demonstrating the impact of the 2022 Tonga volcanic eruption on dayside equa">

Equatorial Electrojet and Counter Electrojet caused by the 15 January 2022 Tonga Volcanic Eruption

crossref(2023)

引用 0|浏览3
暂无评分
摘要
<p class="p1">We present space and ground-based multi-instrument observations demonstrating the impact of the 2022 Tonga volcanic eruption on dayside equatorial electrodynamics. A strong counter electrojet (CEJ) was observed by Swarm and ground-based magnetometers on 15 January after the Tonga eruption and during the recovery phase of a moderate geomagnetic storm. Swarm also observed an enhanced equatorial electrojet (EEJ) preceding the CEJ in the previous orbit. The observed EEJ and CEJ exhibited complex spatiotemporal variations. We combine them with the Ionospheric Connection Explorer (ICON) neutral wind measurements to disentangle the potential mechanisms. Our analysis indicates that the geomagnetic storm had minimal impact; instead, a large-scale atmospheric disturbance propagating eastward from the Tonga eruption site was the most likely driver for the observed intensiYcation and directional reversal of the equatorial electrojet. The CEJ was associated with strong eastward zonal winds in the E-region ionosphere, as a direct response to the lower atmosphere forcing.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要