Textile Chemical Sensors

Materials for Chemical Sensors(2023)

引用 0|浏览10
暂无评分
摘要
Over the past decade, e-health devices and sensor networks have received the greatest attention among the rising Internet of Things (IoT) technologies. IoT sensors include smart sensors and actuators, and even wearable sensing devices that can be incorporated into daily clothes or worn as accessories or implants. Real-time collection and sharing of information regarding our body status are significant not only for hospitalized situations but also during routine daily activities. For instance, continuous monitoring of vital parameters is crucial to take precautionary measures during sports activity or in the wearer’s workplace, especially in the presence of diagnosed, chronic diseases. In this view, wearable sensors and smart textiles can be a mean to realize the so-called personalized-medicine and revolutionize our way to manage healthcare and practice medicine. The main constraints that hinder a straightforward realization of a reliable wearable chemical sensor are related to the low analyte concentration, small sampling volumes and fluid stagnation, mechanical resiliency, signal stability, biofouling and biocompatibility issues, together with the need to operate in physiological conditions, adapt to the human body without causing discomfort and work with low power consumption, thus requiring simple electronic components. In general, the central idea shared by wearable technologies is the wear-and-forget functionality, which automatically excludes all approaches with an intrusive nature that rely, for instance, on blood samples (Windmiller and Wang 2013). Sweat, saliva, interstitial fluids, tears, and breath are biological fluids that contain abundant information about health status, are readily accessible, and can be sampled for non-invasive monitoring. Wound exudate is another biofluid that is currently attracting interest in the field of wearable sensing technologies targeting the realization of smart wound dressings. Upon integration of chemical sensors that are able to non-invasively monitor the wound site, these tools would dramatically impact the current treatment approaches, with the potential to improve significantly the wound management and decrease the healing time.
更多
查看译文
关键词
chemical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要