Multiscale meteorological controls and impact of soil moisture heterogeneity on radiation fog in complex terrain

crossref(2022)

引用 0|浏览1
暂无评分
摘要
Abstract. Coupled surface-atmosphere high-resolution simulations were carried out to understand radiation fog development and persistence in a city surrounded by complex terrain. The controls of mesoscale meteorology and microscale soil moisture heterogeneity on fog were investigated using case studies for the city of Christchurch, New Zealand. Numerical model simulations from the synoptic to micro- scale were carried out using the Weather Research and Forecasting (WRF) model and the Parallelised Large-Eddy Simulation Model (PALM). Heterogeneous soil moisture, land use, and topography were included. The spatial heterogeneity of soil moisture was derived using Landsat 8 (https://www.usgs.gov/landsat-missions/landsat-8, last access: 10 October 2022) satellite imagery and ground-based meteorological observations. Eight simulations were carried out under identical meteorological conditions. One contained homogeneous soil moisture and one contained heterogeneous soil moisture derived from Landsat 8 imagery. For the other six simulations, the soil moisture heterogeneity magnitudes were amplified following the observed spatial distribution to aid our understanding of the impact of soil moisture heterogeneity. Our results showed that soil moisture heterogeneity did not significantly change the general spatial structure of near-surface fog occurrence, even when amplified. However, compared to homogeneous soil moisture, spatial heterogeneity in soil moisture leads to significant changes in radiation fog duration. The resulting changes in fog duration can be more than 50 minutes, although such changes are not directly correlated with spatial variations in soil moisture. The simulations showed that the mesoscale (104 to 2 × 105 m) meteorology controls the location of fog occurrence, while soil moisture heterogeneity alters fog duration at the microscale (10−2 to 103 m). Our results highlight the importance of including soil moisture heterogeneity for accurate spatiotemporal fog forecasting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要