谷歌浏览器插件
订阅小程序
在清言上使用

Developing and testing a validation procedure to successfully use on-the-move sensors in urban environments

crossref(2023)

引用 0|浏览15
暂无评分
摘要
With the increasing attempt to empower citizens and civil society in promoting virtuous behaviours and relevant climate actions, novel user-friendly and low-cost tools and sensors are nowadays being developed and distributed on the market. Most of these sensors are typically easy to install with a ready-to-use system, while measured data are automatically uploaded on a mobile application or a web dashboard which also guarantees secure and open access to measurements gathered by other users. However, the quality of the datum and the calibration of these sensors are often ensured against research-grade instrumentations only in the laboratory and rarely in real-world measurement. The discrepancies arising between these low-cost sensors and research-grade instrumentations are such that the first might be impossible to use if a validation (and re-calibration if needed) under environmental conditions is not performed. Here we propose a validation procedure applied to the MeteoTracker, a recently developed portable sensor to monitor atmospheric quantities on the move. The ultimate scope is to develop and implement a general procedure to test and validate the quality of the MeteoTracker data to compile user guidelines tailored for on-the-move sensors. The result will evaluate the feasibility of MeteoTracker (and potentially other on-the-move sensors) to integrate the existing monitoring networks on the territory, improve the atmospheric data local coverage and support the informed decision by the authorities. The procedure will include multi-sensor testing of all the sensor functionalities, validation of all data simultaneously acquired by several sensors under similar conditions, methods and applications of comparisons with research-grade instruments. The first usage of the MeteoTracker will be also presented for different geographical contexts where the sensors will be used for citizen science activities and develop a monitoring network of selected Essential Variables within the HORIZON-EU project I-CHANGE (Individual Change of HAbits Needed for Green European transition).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要