Reynolds stresses in gravity currents approaching an obstacle

crossref(2023)

引用 0|浏览5
暂无评分
摘要
<p><strong></strong>:&#160;Gravity currents are flows generated by density differences within two contacting fluids.&#160;In this work the interaction between lock-release gravity currents propagating over a horizontal rectangular channel and an emergent cylinder is analyzed through velocity measurements obtained through PIV. Two-dimensional instantaneous velocity fields are measured in a plane perpendicular to the bottom along the center axis of the channel upstream of the obstacle. The experiments were also conducted without the cylinder for comparison purposes and ten repetitions were carried out for each configuration. The analyses focus on the effects that the presence of an adverse pressure gradient has on both the mean velocity field and the turbulence of the leading part of the current, the head, before the impact. The mean velocity field is not affected by the presence of the obstacle and since no differences were found in the spatial distribution of the mean velocity components, the necessary cylinder-induced deceleration occurs uniformly. Turbulence is studied through the components of the Reynolds stress tensor and their fluxes within the head. In the configuration with the cylinder, there are no fluxes of Reynolds stresses in the inner part of the section. Consequently, the Reynolds stress intensity decreases inside the head compared to the configuration without the obstacle. In conclusion, the presence of an adverse pressure gradient stops the mechanism of Reynolds stress distribution from the main source of production, i.e. the front region, to the inner region of the flow. This leads to a decrease in Reynolds stresses in the inner part of the head and an increase in the frontal region.</p> <p><strong>Acknowledgements</strong>: This work was partially supported by Foundation for Science and Technology's through funding UIDB/04625/2020 (CERIS research unit).</p> <p><strong>Keywords: </strong>Gravity currents, lock release, Particle Image Velocimetry, adverse pressure gradient, Reynolds stress.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要