Effect of the Synthetic Parameters Over Zno in the Co2 Photoreduction

SSRN Electronic Journal(2023)

引用 0|浏览12
暂无评分
摘要
Zinc oxide (ZnO) is an attractive semiconductor material for photocatalytic applications, owing to its opto-electronic properties. Its performances are, however, strongly affected by the surface and opto-electronic properties (i.e., surface composition, facets and defects), in turn related to the synthesis conditions. The knowledge on how these properties can be tuned and how they are reflected on the photocatalytic performances (activity and stability) is thus essential to achieve an active and stable material. In this work, we studied how the annealing temperature (400 & DEG;C vs. 600 & DEG;C) and the addition of a promoter (titanium dioxide, TiO2) can affect the physico-chemical properties of ZnO materials, in particular surface and opto-electronic ones, prepared through a wet-chemistry method. Then, we explored the application of ZnO as a photocatalyst in CO2 photoreduction, an appealing light-to-fuel conversion process, with the aim to understand how the above-mentioned properties can affect the photocatalytic activity and selectivity. We eventually assessed the capability of ZnO to act as both photocatalyst and CO2 adsorber, thus allowing the exploitation of diluted CO2 sources as a carbon source.
更多
查看译文
关键词
zinc oxide,surface properties,opto-electronic properties,carbon dioxide photoreduction,carbon dioxide adsorber
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要