High-Gain MoS2/Ta2NiSe5 Heterojunction Photodetectors with Charge Transfer and Suppressing Dark Current

ACS Applied Materials & Interfaces(2022)

引用 0|浏览6
暂无评分
摘要
Emerging two-dimensional narrow band gap materials with tunable band gaps and unique electrical and optical properties have shown tremendous potential in broadband photodetection. Nevertheless, large dark currents severely hinder the performance of photodetectors. Here, a MoS2/Ta2NiSe5 van der Waals heterostructure device was successfully fabricated with a high rectification ratio of ∼104 and an ultralow reverse bias current of the pA level. Excitingly, the charge transfer and the generation of the built-in electric field of heterostructures have been proved by theory and experiment, which effectively suppress dark currents. The dark current of the heterostructure reduces by nearly 104 compared with the pure Ta2NiSe5 photodetector at Vds = 1 V. The MoS2/Ta2NiSe5 device exhibits excellent photoelectric performance with the maximum responsivity of 515.6 A W-1 and 0.7 A W-1 at the wavelengths of 532 and 1064 nm under forward bias, respectively. In addition, the specific detectivity is up to 3.1 × 1013 Jones (532 nm) and 2.4 × 109 Jones (1064 nm). Significantly, the device presents an ultra-high gain of 6 × 107 and an exceptional external quantum efficiency of 1.2 × 105% under 532 nm laser irradiation. The results reveal that the MoS2/Ta2NiSe5 heterostructure provides an essential platform for the development and application of high-performance broadband optoelectronic devices.
更多
查看译文
关键词
heterojunction photodetectors,high-gain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要