Impact Angle, Speed and Acceleration Control Guidance via Polynomial Trajectory Shaping

Journal of the Franklin Institute(2023)

引用 1|浏览13
暂无评分
摘要
An Impact Angle, Speed and Acceleration Control Guidance (IASAG) law against the stationary target is proposed, which is critical for the effectiveness of the air-to-surface guided weapons. It is hard to address multiple terminal constraints problem for unpowered missile, especially including terminal speed constraint, which is uncontrollable state. Based on Line-of-Sight (LOS) angle, a fourth-order polynomial function is designed to make the number of coefficients of the function equal to number of boundary conditions. Through analytic calculation and transformation, the relation between the specified boundary conditions and the coefficients are established. The coefficient equations are reduced to a univariate nonlinear equation whose solution is determined by terminal speed constraint. Based on the characteristic of the nonlinear equation, we propose a Particle Swarm Optimization(PSO) method to find the coefficient that satisfies terminal speed constraint. According to Lyapunov stability theory, an asymptotically stable trajectory tracking controller is designed to track the reference leading angle with respect to range-to-go to guarantee the impact angle, speed and acceleration constraints. The effectiveness of the proposed guidance law is verified through numerical simulations.& COPY; 2023 The Franklin Institute. Published by Elsevier Inc. All rights reserved.
更多
查看译文
关键词
acceleration control guidance,impact
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要