Characterizing the differential distribution and targets of Sumo1 and Sumo2 in the mouse brain

iScience(2023)

引用 0|浏览6
暂无评分
摘要
SUMOylation is an evolutionarily conserved eukaryotic posttranslational protein modification with broad biological relevance. Differentiating between the major small ubiquitin-like modifier (SUMO) paralogs and uncovering paralog-specific functions in vivo has long been very difficult. To overcome this problem, we generated His6-HA-Sumo2 and HA-Sumo2 knockin mouse lines, expanding upon our existing His6-HA-Sumo1 mouse line, to establish a "toolbox"for Sumo1-Sumo2 comparisons in vivo. Leveraging the specificity of the HA epitope, we performed whole-brain imaging and uncovered regional differences between Sumo1 and Sumo2 expression. At the subcellular level, Sumo2 was specifically detected in extranuclear compartments, including synapses. Immunoprecipitation coupled with mass spectrometry identified shared and specific neuronal targets of Sumo1 and Sumo2. Target validation using proximity ligation assays provided further insight into the subcellular distribution of neuronal Sumo2-conjugates. The mouse models and associated datasets provide a powerful framework to determine the native SUMO "code"in cells of the central nervous system.
更多
查看译文
关键词
Imaging anatomy,Molecular biology,Neuroscience
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要