Impact of flow regime on the performance of anti-biofouling coatings

Scientific Reports(2023)

Cited 1|Views8
No score
Abstract
Biofouling poses significant challenges for marine transportation due to increased skin drag, which results in increased fuel cost and associated CO_2 emissions. Current antifouling methods involving polymer coating, biocides, and self-depleting layers harm marine ecosystems and contribute to marine pollution. Significant advancements have resulted in using bioinspired coatings to address this issue. However, prior investigations have predominantly focused on wettability and adhesion aspects, resulting in a limited understanding of the impact of flow regime on bioinspired structure patterns for antifouling. We conducted comprehensive experiments with two bioinspired coatings 1 under laminar and turbulent flow regimes and compared them with a smooth surface. The two coatings are composed of regular arrangements of micropillars measuring 85 μm in height and spaced at 180 μm (pattern A) and 50 μm high micropillars spaced at 220 μm (pattern B). Theoretical arguments indicate that wall-normal velocity fluctuations near the micropillars’ top significantly contribute to reducing the onset of biofouling under turbulence compared to the smooth surface. Pattern A coating can effectively decrease biofouling by 90
More
Translated text
Key words
Engineering,Mechanical engineering,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined