Agent Based Modeling of the Spread of Social Unrest Using Infectious Disease Models

ACM Transactions on Spatial Algorithms and Systems(2023)

引用 0|浏览1
暂无评分
摘要
Prior research suggests that the timing and location of social unrest may be influenced by similar unrest activities in another nearby region, potentially causing a spread of unrest activities across space and time. In this paper, we model the spread of social unrest across time and space using a novel approach, grounded in agent-based modeling (ABM). In it, regions (geographic polygons) are represented as agents that transition from one state to another based on changes in their environment. Our approach involves (1) creating a vector for each region/agent based on socio-demographic, infrastructural, economic, geographic, and environmental (SIEGE) factors, (2) formulating a neighborhood distance function to identify an agent's neighbors based on geospatial distance and SIEGE proximity, (3) designing transition probability equations based on two distinct compartmental models—i.e., the Susceptible-Infected-Recovered (SIR) and the Susceptible-Infected-Susceptible (SIS) models, and (4) building a ground truth for evaluating the simulations. We use ABM to determine the individualized probabilities of each region/agent to transition from one state to another. The models are tested using the districts of three states in India as agents at a monthly scale for 2016-2019. For ground truth of unrest events, we use the Armed Conflict Location and Event Data (ACLED) dataset. Our findings include that (1) the transition probability equations are viable, (2) the agent-based modeling of the spread of social unrest is feasible while treating regions as agents (Brier's score < 0.25 for two out of three regions), and (3) the SIS model performs comparatively better than the SIR model.
更多
查看译文
关键词
social unrest,infectious disease models,agent,spread,modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要