Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon during the dry season: dependence of aerosol-cloud and aerosol-radiation interactions on aerosol loading

Atmospheric Chemistry and Physics(2020)

引用 6|浏览72
暂无评分
摘要
Abstract. Biomass burning (BB) aerosols can influence regional and global climate through interactions with radiation, clouds, and precipitation. Here, we investigate the impact of BB aerosols on the energy balance and hydrological cycle over the Amazon Basin during the dry season. We performed WRF-Chem model simulations for a range of different BB emission scenarios to explore and characterize nonlinear effects and individual contributions from aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). The ARI of BB aerosols tend to suppress low-level liquid clouds by local warming and increased evaporation, and to facilitate the formation of high-level ice clouds by enhancing updrafts and condensation at high altitudes. In contrast, the ACI of BB aerosol particles tend to enhance the formation and lifetime of low-level liquid clouds by providing more cloud condensation nuclei (CCN), and to suppress the formation of high-level ice clouds by reducing updrafts and condensable water vapor at high altitudes (> 8 km). For scenarios representing the lower and upper limits of BB emission estimates for recent years (2002–2016), we obtained total BB aerosol radiative forcings of −0.2 W m−2 and 1.5 W m−2, respectively, showing that the influence of BB aerosols on the regional energy balance can range from modest cooling to strong warming. We find that ACI dominate at low BB emission rates and low aerosol optical depth (AOD), leading to an increased cloud liquid water path (LWP) and negative radiative forcing, whereas ARI dominate at high BB emission rates and high AOD, leading to a reduction of LWP and positive radiative forcing. In all scenarios, BB aerosols led to a decrease in the frequency of occurrence and rate of precipitation, caused primarily by ACI effects at low aerosol loading and by ARI effects at high aerosol loading. Overall, our results show that ACI tend to saturate at high aerosol loading, whereas the strength of ARI continues to increase and plays a more important role in highly polluted episodes and regions. This should hold not only for BB aerosols over the Amazon, but also for other light-absorbing aerosols such as fossil fuel combustion aerosols in industrialized and densely populated areas. The importance of ARI at high aerosol loading highlights the need for accurately characterizing aerosol optical properties in the investigation of aerosol effects on clouds, precipitation, and climate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要