The central role of tilted anisotropy for field-free spin–orbit torque switching of perpendicular magnetization

NPG Asia Materials(2024)

引用 0|浏览11
暂无评分
摘要
The discovery of efficient magnetization switching upon device activation by spin Hall effect (SHE)-induced spin–orbit torque (SOT) changed the course of magnetic random-access memory (MRAM) research and development. However, for electronic systems with perpendicular magnetic anisotropy (PMA), the use of SOT is still hampered by the necessity of a longitudinal magnetic field to break magnetic symmetry and achieve deterministic switching. In this work, we demonstrate that robust and tunable field-free current-driven SOT switching of perpendicular magnetization can be controlled by the growth protocol in Pt-based magnetic heterostructures. We further elucidate that such growth-dependent symmetry breaking originates from the laterally tilted magnetic anisotropy of the ferromagnetic layer with PMA, a phenomenon that has been largely neglected in previous studies. We show experimentally and in simulation that in a PMA system with tilted anisotropy, the deterministic field-free switching exhibits a conventional SHE-induced damping-like torque feature, and the resulting current-induced effective field shows a nonlinear dependence on the applied current density. This relationship could be potentially misattributed to an unconventional SOT origin.
更多
查看译文
关键词
perpendicular magnetization,tilted anisotropy,field-free,spin-orbit
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要