Methanol bioconversion in Methylotuvimicrobium buryatense 5GB1C through self-cycling fermentation

Bioprocess and Biosystems Engineering(2023)

引用 0|浏览5
暂无评分
摘要
Methanol is an abundant and low-cost next-generation carbon source. While many species of methanotrophic bacteria can convert methanol into valuable bioproducts in bioreactors, Methylotuvimicrobium buryatense 5GB1C stands out as one of the most promising strains for industrialization. It has a short doubling time compared to most methanotrophs, remarkable resilience against contamination, and a suite of tools enabling genetic engineering. When approaching industrial applications, growing M. buryatense 5GB1C on methanol using common batch reactor operation has important limitations; for example methanol toxicity leads to mediocre biomass productivity. Advanced bioreactor operation strategies, such as fed-batch and self-cycling fermentation, have the potential to greatly improve the industrial prospects of methanotrophs growing on methanol. Herein, implementation of fed-batch operation led to a 26-fold increase in biomass density, while two different self-cycling fermentation (SCF) strategies led to 3-fold and 10-fold increases in volumetric biomass productivity. Interestingly, while synchronization is a typical trait of microbial populations undergoing SCF, M. buryatense 5GB1C cultures growing under this mode of operation led to stable, reproducible cycles but no significant synchronization.
更多
查看译文
关键词
Methylotuvimicrobium buryatense
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要