Kinetic equation for weak interaction of directional internal waves

arXiv (Cornell University)(2023)

Cited 0|Views2
No score
Abstract
Starting from the two-dimensional Boussinesq equation without rotation, we derive a kinetic equation for weak interaction of internal waves using non-canonical variables. We follow a formalism introduced by P. Ripa in the 80's. The advantage of this formalism is that it describes the system in terms of the natural linear eigenfunctions of eastward and westward propagating internal waves. Using properties of orthogonality of the eigenfunctions with respect to a (pseudo) metric set by the energy we can write non perturbative theory for the interaction of waves given in terms of the expansion amplitudes. The evolution is controlled by a system of equations, with quadratic nonlinearity, which is an exact representation of the original model equations. The dynamics is constrained by the conservation of energy and pseudo-momentum, which can be written simply as a linear combination of the squared absolute value of the amplitudes. The possibility of a generalization of the Fjortoft's argument to internal gravity waves and observation of a non trivial double cascade of energy and pseudo-momentum is discussed.
More
Translated text
Key words
kinetic equation,weak interaction,waves
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined