Enhanced energy density quasi-solid-state supercapacitor based on an ionic liquid incorporated aqueous gel polymer electrolyte with a redox-additive trimethyl sulfoxonium iodide

JOURNAL OF ENERGY STORAGE(2023)

引用 4|浏览3
暂无评分
摘要
Enhancing interfacial redox activities by introducing a redox-active species in electrolytes is a latest strategy to enhance the performance characteristics of supercapacitors. Herein, an aqueous redox-active gel polymer elec-trolyte (R-GPE) is synthesized by adding a redox-active salt (trimethyl-sulfoxonium iodide, TMSI) in an ionic liquid (1-ethyl-3-methylimidazolium chloride, EMICl), entrapping in a host polymer poly(vinyl alcohol). The free-standing film of R-GPE shows high flexibility and excellent electrochemical properties including high room temperature ionic conductivity (sigma RT = 15.4 mS cm -1) and wide electrochemical stability window (ESW -2.9 V versus Ag/Ag+), which makes the R-GPE film suitable in supercapacitor application. Two supercapacitors are fabricated using gel polymer electrolytes (without and with TMSI, respectively), and activated carbon electrodes, produced from a bio-waste pollen-cone. Presence of TMSI as redox-additive in R-GPE enhances the performance of the device with almost 5-times higher value of specific capacitance (-613 F g-1) and specific energy (-69 Wh kg -1) as compared to the device with GPE (without TMSI). The supercapacitor cell with R-GPE demonstrates a moderate rate capability. The device offers a-60 % (i.e.-357 F g-1) capacitance retention after-5000 charge -discharge cycles with initial fading of-18 % and >95 % of Coulombic efficiency.
更多
查看译文
关键词
ionic liquid,aqueous gel polymer,electrolyte,quasi-solid-state,redox-additive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要