Genetic divergence studies for yield and quality traits in high protein landraces of rice (Oryza sativa L.)

B. Bhargavi, Y. Suneetha,J. Aravind Kumar,T. Srinivas

PLANT SCIENCE TODAY(2023)

Cited 0|Views0
No score
Abstract
The present study was undertaken to study the extent of genetic diversity in high protein rice landraces with respect to yield, yield components and quality characters. In this direction, 30 high protein rice landraces, collected from different parts of country by ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad along with the high protein check, CR DHAN 310 were evaluated during Kharif 2021 at ICAR-IIRR farm located at International Crops Research Institute of Semi Arid Tropics (ICRISAT), Hyderabad. The study examined the genetic divergence of high protein rice cultures for yield, quality and nutritional parameters. Multivariate analysis techniques of Mahalanobis D2 and Principal Component Analysis (PCA) were used to estimate the genetic diversity in the experimental material. In Mahalanobis D2, the 31 high protein rice cultures were divided into six clusters. Cluster I had highest number of rice cultures (19), followed by Cluster III and V with five, four cultures, respectively. The clusters, II, IV, VI were mono -genotypic. It was discovered that grouping of these cultures into several clusters was random and was not related to geographical diversity. Inter -cluster distances between clusters V and VI were maximum. Cluster V had also exhibited higher intra-cluster distance. Further, Cluster VI had showed maximum yield plant-1, grains per panicle-1, zinc content and test weight, while, Cluster V had recorded high protein content. The greatest contribu-tion to genetic divergence was recorded by yield plant-1 (21.60%), followed by iron (10.54%) and zinc content (9.54%). In Principal Component Analysis, the first five Principal Components (PCs) with eigen values >1 accounted for cumulative contribution of 67.69% to the total variability. The three traits, yield plant-1, iron content, and amylose content contributed the most to variability. The 2D scatter diagram exhibited 18 different clusters, out of which 11 clusters were mono-genotypic. Mahalanobis D2 Statistic and PCA concluded maximum genetic diversity between the landraces, JAK 248-3 and JAK 638 with JAK 611.
More
Translated text
Key words
high protein landraces,genetic divergence studies,rice,quality traits
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined