Effects of Exogenous ALA on Leaf Photosynthesis, Photosynthate Transport, and Sugar Accumulation in Prunus persica L.

Ruolin Liang,Liangju Wang, Xinqing Wang,Jianting Zhang, Xing Gan

FORESTS(2023)

引用 2|浏览6
暂无评分
摘要
Peaches/nectarines (Prunus persica L.) are widely cultivated worldwide. As with other species, the sugar content is the most important trait for fruit quality, especially for precocious cultivars. Most fruits need to improve their sugar content in order to be more profitable under fierce market competition. 5-Aminolevulinic acid (ALA), a naturally occurring delta-amino acid, has been shown to improve leaf photosynthesis and fruit quality, especially sugar content. However, the mechanisms are not clear. The objective of this study is to determine the effects of exogenous ALA on leaf photosynthesis, assimilate transport, and sugar accumulation during fruit development. We used the field-cultivated precocious nectarine 'Zhongyoutao 4' and potted cultivated peach 'Zhongai 33' as materials, whereas in the second experiment, we used C-14 radiolabeling to trace C-14 fixation in leaves, transport in branches, and distribution in different organs. The results showed that ALA significantly enhanced the photosynthetic gas exchange capacity, and the effects were maintained for at least one month. The results of the C-14 radiolabel experiment showed that ALA enhanced C-14 fixation in leaves, promoted the transport to fruits, and reduced the allocation rate of young leaves. This suggests that ALA enlarges "source" volume and strengthens "sink" competition; therefore, assimilate translocation to fruits is promoted. It was observed that sucrose contributed the main saccharide for peach fruit quality at maturity, which might not be converted from glucose or fructose but from starch degradation. ALA improved starch accumulation in the young fruits as well as degradation during maturity. The RT-qPCR showed that the expression of most genes involved in sugar metabolism did not correlate or even negatively correlate with fruit sucrose content. However, the expressions of SWEET1/6/7/8/15/16/17 were highly correlated with the sucrose content, and exogenous ALA treatment up-regulated the gene expression at fruit maturity, suggesting they might play an important role in fruit sugar accumulation. These results provide important theoretical support for ALA application in fruit quality improvement, as well as a regulatory mechanism study on sugar accumulation in fruits.
更多
查看译文
关键词
5-Aminolevulinic acid (ALA), C-14-assimilate translocation, peach, nectarine, photosynthesis, soluble sugar content, source sink
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要