Design and optimization of stress/strain in GAA nanosheet FETs for improved FOMs at sub-7 nm nodes

PHYSICA SCRIPTA(2023)

引用 1|浏览2
暂无评分
摘要
Stress/strain engineering techniques are employed to boost the performance of Gate-all-around (GAA) vertically stacked nanosheet field-effect transistors (NSFETs) for 7 nm technology nodes and beyond. In this work, we report on the 3D numerical simulation study of the impacts of source/drain epitaxial and uniaxial strained-SiGe channel stresses on p-type NSFETs. It is shown that the uniaxial strained-SiGe channel improves the drive current by up to 107% due to higher compressive stress while the 3-stack NSFET can achieve an enhancement in drive current even up to 187% using a 30% Ge mole fraction. Furthermore, we compare the multiple stacked channel NSFETs and nanowire FETs (NWFETs) considering different strain techniques. As compared to a 3-stack strained-SiGe NWFET, NSFETs show 27% and 10% enhancements in I-ON and SS, respectively. Vertically stacked NSFETs are shown to be the best option to improve the hole mobility under biaxial and uniaxial compressive strain rather than NWFETs. We also look at how the Ge mole fraction affects various electrical properties in a uniaxial strained-SiGe channel with shrinking dimensions of scaled NSFETs. It is observed that for a fixed L-g, I-ON/I-OFF ratio, SS and DIBL decrease with the increase in Ge mole fraction.
更多
查看译文
关键词
gaa nanosheet fets,improved foms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要