Validation of MYC and BCL6 rapid break apart digital fluorescence in situ hybridization assays for clinical use

Michael Liew,Leslie Rowe, Kristina Moore,Emily Aston, Kathryn O'Brien,Maria Longhurst, Jason Kenney, Marshall Priest,Wenhua Zhou, Diane Wilcock,Anton Rets,Rodney Miles

INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY(2023)

Cited 0|Views5
No score
Abstract
Objective: Detection of gene rearrangements in MYC (a family of regulator genes and proto-oncogenes) and human B-cell lymphoma 6 (BCL6) using fluorescence in situ hybridization (FISH) are important in the evaluation of lymphomas, in particular diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma. Our current clinical MYC and BCL6 FISH workflow involves an overnight hybridization of probes with digital analysis using the GenASIs Scan and Analysis instrument (Applied Spectral Imaging). In order to improve assay turnaround time SureFISH probes were validated to reduce the hybridization time from 16 hours down to 1.5 hours. Methods: Validation was a four-phase process involving initial development of the assays by testing new probes in a manual protocol, and cytogenetic studies to confirm the probe specificity, sensitivity, and localization. In the next phase, the assays were validated as a manual assay. The third phase involved development of the digital FISH assays by testing and optimizing the GenASIs Scan and Analysis instrument. In the final phase, the digital FISH assays were validated. Results: Cytogenetic studies confirmed 100% probe sensitivity/specificity, and localization patterns. Negative reference range cutoffs calculated from 20 normal lymph nodes using the inverse of the beta cumulative probability density function (Excel BETAINV calculation) were 11% inclusive for both manual and digital MYC and BCL6 assays. There was 100% concordance between the manual and digital methods. The shortened hybridization time decreased the overall workflow time by 14.5 hours. Conclusions: This study validates the use of the SureFISH MYC and BCL6 probes on formalin fixed paraffin embedded (FFPE) tissue sections using a hybridization time of 1.5 hours that shortened the overall workflow by 14.5 hours. The process described also provides a standardized framework for validating digital FISH assays in the future.
More
Translated text
Key words
situ hybridization assays,digital fluorescence,myc,bcl6
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined