Hydrogen sulfide alleviates salt stress through auxin signaling in Arabidopsis

Lei Yang, Jiahui Yang,Chenxue Hou, Panpan Shi, Yiwei Zhang, Xinlu Gu,Weizhong Liu

ENVIRONMENTAL AND EXPERIMENTAL BOTANY(2023)

引用 1|浏览0
暂无评分
摘要
Hydrogen sulfide (H2S) is a third gas transmitter following nitric oxide and carbon monoxide, that regulates plant growth, photosynthesis, and responses to abiotic stress. Auxin, a crucial plant hormone, is widely involved in stress response and plant growth processes. H2S and auxin interact with each other to regulate root growth. Whether H2S functions in the auxin signaling pathway under salt stress remains unclear. In this study, we used the double mutant of the H2S-producing enzyme-encoding gene L-cysteine desulfhydrase (lcd des1), which found that H2S was involved in alleviating salt stress through auxin signaling in Arabidopsis using physiological and transcriptomic data. RNA-seq analysis identified 267 differentially expressed genes (DEGs) in response to salt stress and revealed that H2S activated salt-related genes and limited cellular activities associated with growth through the regulation of auxin signaling. Furthermore, auxin transport-related mutants (pin347, aux1-7) and auxin signal transduction related mutants (tir1-1, arf10 16) had a significantly inhibited root length under salt stress, and root growth inhibition were alleviated after exogenous H2S treatment. Exogenous H2S treatment, however, did not alleviate inhibition in pin2 with salt treatment. Taken together, these findings suggest that H2S regulates Arabidopsis salt tolerance and inhibits root growth by regulating PIN2 expression.
更多
查看译文
关键词
Hydrogen sulfide, Auxin, Salt stress, Root growth, Transcriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要