Computational investigation of phytochemicals identified from medicinal plant extracts against tuberculosis

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS(2024)

引用 1|浏览6
暂无评分
摘要
Tuberculosis (TB) is still one of the world's most challenging infectious diseases and the emergence of drug-resistant Mycobacterium tuberculosis poses a significant threat to the treatment of TB. Identifying new medications based on local traditional remedies has become more essential. Gas Chromatography-Mass spectrometry (GC-MS) (Perkin-Elmer, MA, USA) was used to identify potential bioactive components in Solanum surattense, Piper longum, and Alpinia galanga plants sections. The fruits and rhizomes' chemical compositions were analyzed using solvents like petroleum ether, chloroform, ethyl acetate, and methanol. A total of 138 phytochemicals were identified, further categorized and finalized with 109 chemicals. The phytochemicals were docked with selected proteins (ethA, gyrB, and rpoB) using AutoDock Vina. The top complexes were selected and preceded with molecular dynamics simulation. It was found that the rpoB-sclareol complex is very stable, which means it could be further explored. The compounds were further studied for ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties. Sclareol has obeyed all the rules and it might be a potential chemical to treat TB.Communicated by Ramaswamy H. Sarma
更多
查看译文
关键词
Tuberculosis,sclareol,principal component analysis,molecular docking,network analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要