Dual-Modal Nanoplasmonic Light Upconversion through Anti-Stokes Photoluminescence and Second-Harmonic Generation from Broadband Multiresonant Metal Nanocavities

ACS NANO(2023)

Cited 0|Views21
No score
Abstract
Metal nanocavities can generate plasmon-enhanced light upconversion signals under ultrashort pulse excitations through anti-Stokes photoluminescence (ASPL) or nonlinear harmonic generation processes, offering various applications in bioimaging, sensing, interfacial science, nanothermometry, and integrated photonics. However, achieving broadband multiresonant enhancement of both ASPL and harmonic generation processes within the same metal nanocavities remains challenging, impeding applications based on dual-modal or wavelength-multiplexed operations. Here, we report a combined experimental and theoretical study on dual-modal plasmon-enhanced light upconversion through both ASPL and second-harmonic generation (SHG) from broadband multiresonant metal nanocavities in two-tier Ag/ SiO2/Ag nanolaminate plasmonic crystals (NLPCs) that can support multiple hybridized plasmons with high spatial mode overlaps. Our measurements reveal the distinctions and correlations between the plasmon-enhanced ASPL and SHG processes under different modal and ultrashort pulsed laser excitation conditions, including incident fluence, wavelength, and polarization. To analyze the observed effects of the excitation and modal conditions on the ASPL and SHG emissions, we developed a time-domain modeling framework that simultaneously captures the mode coupling-enhancement characteristics, quantum excitation-emission transitions, and hot carrier population statistical mechanics. Notably, ASPL and SHG from the same metal nanocavities exhibit distinct plasmonenhanced emission behaviors due to the intrinsic differences between the incoherent hot carrier-mediated ASPL sources with temporally evolving energy and spatial distributions and instantaneous SHG emitters. Mechanistic understanding of ASPL and SHG emissions from broadband multiresonant plasmonic nanocavities marks a milestone toward creating multimodal or wavelength-multiplexed upconversion nanoplasmonic devices for bioimaging, sensing, interfacial monitoring, and integrated photonics applications.
More
Translated text
Key words
nonlinear plasmonics, broadband multiresonant nanocavity, nanolaminate plasmonic crystals, second-harmonic generation, anti-Stokes photoluminescence, hot electrons and holes, intraband recombination
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined