High variability of interaction energy between volcanic particles: implications for deposit stability

NATURAL HAZARDS(2023)

引用 1|浏览4
暂无评分
摘要
Landslides on the flanks of stratovolcanoes can significantly modify the structure of the volcano. Macroscopic factors that determine the stability of volcanic deposits are well understood, but the microscopic interactions between particles and their impact on deposit cohesion remain poorly understood. Deposit cohesion is related to the energy of interaction between particles, and its calculation depends on the surficial properties of the eruptive materials. The purpose of this study was to perform a preliminary comparative analysis of the surficial properties of volcanic materials from various tectonic settings, including electrical (zeta potential) and thermodynamic (surface free energy) components and to calculate the total interaction energy between particles under different environmental conditions. We analyzed samples of eruptive materials obtained from volcanic flows characteristic of six active volcanoes (El Hierro, Pico Do Fogo, Vulcano, Stromboli, Mt. Etna, and Deception Island). The results show that deposit cohesion varies among volcanoes and changes drastically with the pH of the medium. Among the volcanic systems investigated, El Hierro (pH = 3) has the most cohesive materials, while Mt. Etna (pH = 8) has the least cohesive materials. Our results suggest that microscopic electrical and thermodynamic properties play a role in the stability of volcanic deposits, and confirm the need for a greater research focus in this area.
更多
查看译文
关键词
Zeta potential and surface free energy, Volcanic ashes, Interaction energy between colloidal particles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要