Multidimensional controllable fabrication of tumor spheroids based on a microfluidic device

LAB ON A CHIP(2023)

Cited 2|Views10
No score
Abstract
Multicellular tumor spheroids (MCTSs) are in vitro solid tumor models with physiological relevance. To achieve robust process control, a MCTS fabrication method that combines cell membrane engineering and droplet microfluidic techniques is designed. The fluidic control and the chemical interactions between biotin and streptavidin enable artificial cell aggregation to be accomplished in seconds. Then, spheroids with a uniform size are fabricated within alginate microcapsules. Microfluidic mixing-based cell aggregation regulates the cell aggregate size and the spheroid composition, and the microcapsules regulate the size of spheroids from 120 to 180 mu m. The method shows applicability for various cancer cell lines, including HCT116, HepG2, and A549. In addition, composite colon cancer spheroids consisting of HCT116 and NIH3T3 with predetermined cell ratios and uniform distributions are produced. The generated MCTSs are assessed using the ELISA and UPLC-MS/MS techniques. The release of vascular endothelial growth factor (VEGF) and the 5-fluorouracil (5-FU) resistance differ in the monotypic and cocultured colon cancer models. Our method provides a robust way to produce consistent and customized MCTSs in cancer research and drug screening.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined