Prediction of Flow Behavior and Deformation Analysis of AA5754 Sheet Metal at Warm and Hot Temperatures

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE(2024)

Cited 0|Views1
No score
Abstract
The utilization of lightweight materials such as AA5754 aluminum alloys in the inner body panel parts of vehicles has been significantly important for automotive manufacturers to minimize the high fuel consumption by reducing the overall weight. In this study, the flow behavior of AA5754 sheet metal has been discussed by conducting uniaxial tensile tests at five different temperatures (RT, 200, 250, 300, 350 degrees C) and three strain rates (0.001, 0.01, 0.05 s(-1)). Additionally, the capability of Fields and Backofen (F&B) and Voce hardening rules in describing the flow behavior of AA5754 at different temperatures and strain rates has been investigated by conducting uniaxial tensile tests in finite element analysis. It has been found that the main deformation mechanisms for the AA5754 are the strain hardening mechanism up to 250 degrees C, strain hardening and dynamic recovery mechanisms at 300 degrees C, dynamic recrystallization and strain hardening mechanisms at 350 degrees C. While the F&B hardening rule has been able to successfully capture the flow behavior of AA5754 up to 250 degrees C with a 14.36% error, its capability has significantly reduced after 250 degrees C due to its incapability of describing the effects of dynamic recovery and recrystallization. Voce hardening model has been better able to describe the flow behavior of AA5754 at all the temperature levels than F&B model due to its saturation behavior.
More
Translated text
Key words
constitutive models,deformation behavior,finite element analysis,warm tensile test
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined