In-depth study of kinetics, thermodynamics, and reaction mechanism of catalytic pyrolysis of disposable face mask using spent adsorbent based catalysts

JOURNAL OF THE ENERGY INSTITUTE(2023)

引用 0|浏览2
暂无评分
摘要
Millions of face mask has been converted to waste since the onset of COVID-19 virus. Hence, present study explores the feasibility of converting disposable face masks to energy through catalytic pyrolysis process using a low-cost waste (spent aluminum hydroxide/oxide nanoparticle adsorbent) derived catalyst. Thermogravimetric analysis of the non-catalytic and catalytic pyrolysis of disposable face mask was conducted at varied heating rates of 10 degrees C/min, 20 degrees C/min, 30 degrees C/min, 40 degrees C/min, and 50 degrees C/min, respectively. Iso-conversional methods, Kis-singer Akahira Sunose (KAS) and Ozawa Flynn Wall (OFW) were used for the kinetic study. The reaction mechanism was analyzed using Criado's z-master plot (CZMP) method along with the determination of ther-modynamic parameters of the process. Results found that the addition of a catalyst to the process benefits the overall efficacy of the process by reducing the activation energy (Ea) (without catalyst; OFW-Ea: 188.7 kJ/mol, KAS-Ea: 186.2 kJ/mol) as well as lowering the disordered state of the process. Metal doped catalyst (Ni/ gamma-Al2O3) (OFW-Ea: 168.4 kJ/mol, KAS-Ea: 167.8 kJ/mol) shows a larger reduction in activation energy in comparison to bare alumina (gamma-Al2O3) (OFW-Ea: 183.2 kJ/mol, KAS-Ea: 180.4 kJ/mol). The current study presented disposable face masks as reclaimable in terms of energy and waste-derived catalyst as a potent solution to be explored in place of high-cost commercial catalysts.
更多
查看译文
关键词
disposable face mask,catalytic pyrolysis,catalysts,adsorbent,in-depth
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要