Bottling Liquid-Like Minerals for Advanced Materials Synthesis

ADVANCED MATERIALS(2023)

引用 1|浏览2
暂无评分
摘要
Materials synthesis via liquid-like mineral precursors has been studied since their discovery almost 25 years ago, because their properties offer several advantages, for example, the ability to infiltrate small pores, the production of non-equilibrium crystal morphologies or mimicking textures from biominerals, resulting in a vast range of possible applications. However, the potential of liquid-like precursors has never been fully tapped, and they have received limited attention in the materials chemistry community, largely due to the lack of efficient and scalable synthesis protocols. Herein, the "scalable controlled synthesis and utilization of liquid-like precursors for technological applications" (SCULPT) method is presented, allowing the isolation of the precursor phase on a gram scale, and its advantage in the synthesis of crystalline calcium carbonate materials and respective applications is demonstrated. The effects of different organic and inorganic additives, such as magnesium ions and concrete superplasticizers, on the stability of the precursor are investigated and allow optimizing the process for specific demands. The presented method is easily scalable and therefore allows synthesizing and utilizing the precursor on large scales. Thus, it can be employed for mineral formation during restoration and conservation applications but can also open up pathways toward calcium carbonate-based, CO2-neutral cements.
更多
查看译文
关键词
biomimetic materials,calcium carbonate,liquid-like minerals,scalable synthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要