Coexistence of quantum key distribution and optical communication with amplifiers over multicore fiber

NANOPHOTONICS(2023)

引用 1|浏览11
暂无评分
摘要
In this paper, the influence of classical signals on quantum key distribution (QKD) is studied over multi-core fiber (MCF) when optical amplifiers exist. Firstly, the long-distance simultaneous transmission architectures of QKD and classical signals are proposed based on advanced asymmetric sending or not sending QKD (SNS-QKD) and classical Bennett-Brassard 1984-QKD (BB84-QKD), and the segment length between optical amplifiers can be adjusted according to requirement. Then, theoretical models of spontaneous Raman scattering noise and four-wave mixing noise are established based on the proposed architectures. Next, the calculation models of the secure key rate under the influence of noises from classical signals are derived. Finally, the experimental results show that the theoretical models match well with the experimental photons, and the maximum difference between experimental and simulated noise photons is less than 2.6 dB. Simulation results show that the performance of asymmetric SNS-QKD is better than that of BB84-QKD architecture when classical signals and quantum signals are transmitted in different cores of MCF.
更多
查看译文
关键词
multicore fiber, noise analysis, quantum key distribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要