Feasibility of deep learning-based tumor segmentation for target delineation and response assessment in grade-4 glioma using multi-parametric MRI

NEURO-ONCOLOGY ADVANCES(2023)

引用 0|浏览13
暂无评分
摘要
Background Tumor burden assessment is essential for radiation therapy (RT), treatment response evaluation, and clinical decision-making. However, manual tumor delineation remains laborious and challenging due to radiological complexity. The objective of this study was to investigate the feasibility of the HD-GLIO tool, an ensemble of pre-trained deep learning models based on the nnUNet-algorithm, for tumor segmentation, response prediction, and its potential for clinical deployment. Methods We analyzed the predicted contrast-enhanced (CE) and non-enhancing (NE) HD-GLIO output in 49 multi-parametric MRI examinations from 23 grade-4 glioma patients. The volumes were retrospectively compared to corresponding manual delineations by 2 independent operators, before prospectively testing the feasibility of clinical deployment of HD-GLIO-output to a RT setting. Results For CE, median Dice scores were 0.81 (95% CI 0.71-0.83) and 0.82 (95% CI 0.74-0.84) for operator-1 and operator-2, respectively. For NE, median Dice scores were 0.65 (95% CI 0.56-0,69) and 0.63 (95% CI 0.57-0.67), respectively. Comparing volume sizes, we found excellent intra-class correlation coefficients of 0.90 (P < .001) and 0.95 (P < .001), for CE, respectively, and 0.97 (P < .001) and 0.90 (P < .001), for NE, respectively. Moreover, there was a strong correlation between response assessment in Neuro-Oncology volumes and HD-GLIO-volumes (P < .001, Spearman's R-2 = 0.83). Longitudinal growth relations between CE- and NE-volumes distinguished patients by clinical response: Pearson correlations of CE- and NE-volumes were 0.55 (P = .04) for responders, 0.91 (P > .01) for non-responders, and 0.80 (P = .05) for intermediate/mixed responders. Conclusions HD-GLIO was feasible for RT target delineation and MRI tumor volume assessment. CE/NE tumor-compartment growth correlation showed potential to predict clinical response to treatment.
更多
查看译文
关键词
artificial intelligence, glioblastoma, neural networks, radiation therapy, tumor segmentation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要