Boosting the Methanol Oxidation Reaction Activity of Pt-Ru Clusters via Resonance Energy Transfer

SMALL(2023)

引用 1|浏览10
暂无评分
摘要
The sluggish kinetics of the methanol oxidation reaction (MOR) with PtRu electrocatalyst severely hinder the commercialization of direct methanol fuel cells (DMFCs). The electronic structure of Pt is of significant importance for its catalytic activity. Herein, it is reported that low-cost fluorescent carbon dots (CDs) can regulate the behavior of the D-band center of Pt in PtRu clusters through resonance energy transfer (RET), resulting in a significant increase in the catalytic activity of the catalyst participating in methanol electrooxidation. For the first time, the bifunction of RET is used to provide unique strategy for fabrication of PtRu electrocatalysts, not only tunes the electronic structure of metals, but also provides an important role in anchoring metal clusters. Density functional theory calculations further prove that charge transfer between CDs and Pt promotes the dehydrogenation of methanol on PtRu catalysts and reduces the free energy barrier of the reaction associated with the oxidation of CO* to CO2. This helps to improve the catalytic activity of the systems participating in MOR. The performance of the best sample is 2.76 times higher than that of commercial PtRu/C (213.0 vs 76.99 mWcm-2mgPt-1${\rm{mW\ cm}}<^>{ - 2}{\rm{\ mg}}_{{\rm{Pt}}}<^>{ - 1}$). The fabricated system can be potentially used for the efficient fabrication of DMFCs.
更多
查看译文
关键词
methanol oxidation reaction activity,pt–ru clusters
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要