Activity-Stability Balance: The Role of Electron Supply Effect of Support in Acidic Oxygen Evolution

SMALL(2023)

引用 2|浏览2
暂无评分
摘要
Developing efficient and durable electrocatalysts for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzers represents a significant challenge. Herein, the cobalt-ruthenium oxide nano-heterostructures are successfully synthesized on carbon cloth (CoOx/RuOx-CC) for acidic OER through a simple and fast solution combustion strategy. The rapid oxidation process endows CoOx/RuOx-CC with abundant interfacial sites and defect structures, which enhances the number of active sites and the charge transfer at the electrolyte-catalyst interface, promoting the OER kinetics. Moreover, the electron supply effect of the CoOx support allows electrons to transfer from Co to Ru sites during the OER process, which is beneficial to alleviate the ion leaching and over-oxidation of Ru sites, improving the catalyst activity and stability. As a self-supported electrocatalyst, CoOx/RuOx-CC displays an ultralow overpotential of 180 mV at 10 mA cm(-2) for OER. Notably, the PEM electrolyzer using CoOx/RuOx-CC as the anode can be operated at 100 mA cm(-2) stably for 100 h. Mechanistic analysis shows that the strong catalyst-support interaction is beneficial to redistribute the electronic structure of Ru-O bond to weaken its covalency, thereby optimizing the binding energy of OER intermediates and lowering the reaction energy barrier.
更多
查看译文
关键词
oxygen,electron supply effect,activity‐stability,balance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要