Flattened Clos: Designing High-performance Deadlock-free Expander Data Center Networks Using Graph Contraction.

NSDI(2023)

引用 0|浏览55
暂无评分
摘要
Clos networks have witnessed the successful deployment of RoCE in production data centers. However, as DCN bandwidth keeps increasing, building Clos networks is becoming cost-prohibitive and thus the more cost-efficient expander graph has received much attention in recent literature. Unfortunately, the existing expander graphs' topology and routing designs may contain Cyclic Buffer Dependency (CBD) and incur deadlocks in PFC-enabled RoCE networks. We propose Flattened Clos (FC), a topology/routing co-designed approach, to eliminate the PFC-induced deadlocks in expander networks. FC's topology and routing are designed in three steps: 1) logically divide each ToR switch into k virtual layers and establish connections only between adjacent virtual layers; 2) generate virtual up-down paths for routing; 3) flatten the virtual multi-layered network and the virtual up-down paths using graph contraction. We rigorously prove that FC's design is deadlock-free and validate this property using a real testbed and packet-level simulation. Compared to expander graphs with the edge-disjoint-spanning-tree (EDST) based routing (a state-of-art CBD-free routing algorithm for expander graphs), FC reduces the average hop count by at least 50% and improves network throughput by 2- 10x or more. Compared to Clos networks with up-down routing, FC increases network throughput by 1.1- 2x under all-to-all and uniform random traffic patterns.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要