A 2D Quantum Dot Array in Planar Si/SiGe

arxiv(2023)

引用 0|浏览19
暂无评分
摘要
Semiconductor spin qubits have gained increasing attention as a possible platform to host a fault-tolerant quantum computer. First demonstrations of spin qubit arrays have been shown in a wide variety of semiconductor materials. The highest performance for spin qubit logic has been realized in silicon, but scaling silicon quantum dot arrays in two dimensions has proven to be challenging. By taking advantage of high-quality heterostructures and carefully designed gate patterns, we are able to form a tunnel coupled 2 $\times$ 2 quantum dot array in a Si/SiGe heterostructure. We are able to load a single electron in all four quantum dots, thus reaching the (1,1,1,1) charge state. Furthermore we characterise and control the tunnel coupling between all pairs of dots by measuring polarisation lines over a wide range of barrier gate voltages. Tunnel couplings can be tuned from about $30~\rm \mu eV$ up to approximately $400~\rm \mu eV$. These experiments provide a first step toward the operation of spin qubits in Si/SiGe quantum dots in two dimensions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要