Ultra-small topological spin textures with size of 1.3nm at above room temperature in Fe78Si9B13 amorphous alloy

arXiv (Cornell University)(2023)

引用 0|浏览35
暂无评分
摘要
Topologically protected spin textures, such as skyrmions1,2 and vortices3,4, are robust against perturbations, serving as the building blocks for a range of topological devices5-9. In order to implement these topological devices, it is necessary to find ultra-small topological spin textures at room temperature, because small size implies the higher topological charge density, stronger signal of topological transport10,11 and the higher memory density or integration for topological quantum devices5-9. However, finding ultra-small topological spin textures at high temperatures is still a great challenge up to now. Here we find ultra-small topological spin textures in Fe78Si9B13 amorphous alloy. We measured a large topological Hall effect (THE) up to above room temperature, indicating the existence of highly densed and ultra-small topological spin textures in the samples. Further measurements by small-angle neutron scattering (SANS) reveal that the average size of ultra-small magnetic texture is around 1.3nm. Our Monte Carlo simulations show that such ultra-small spin texture is topologically equivalent to skyrmions, which originate from competing frustration and Dzyaloshinskii-Moriya interaction12,13 coming from amorphous structure14-17. Taking a single topological spin texture as one bit and ignoring the distance between them, we evaluated the ideal memory density of Fe78Si9B13, which reaches up to 4.44*104 gigabits (43.4 TB) per in2 and is 2 times of the value of GdRu2Si218 at 5K. More important, such high memory density can be obtained at above room temperature, which is 4 orders of magnitude larger than the value of other materials at the same temperature. These findings provide a unique candidate for magnetic memory devices with ultra-high density.
更多
查看译文
关键词
spin,fe78si9b13,ultra-small
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要