Microporous Carbons Obtained via Solvent-Free Mechanochemical Processing, Carbonization and Activation with Potassium Citrate and Zinc Chloride for CO2 Adsorption

Separations(2023)

Cited 2|Views4
No score
Abstract
In this study, the facile and sustainable synthesis of highly microporous carbons is explored to reduce the extensive use of harsh activating agents and solvents. The role of potassium citrate (PC) as a greener activating agent in addition to the conventional ZnCl2 is investigated in the mechanochemical solvent-free preparation of highly microporous carbon materials from chestnut tannin (CT), a biomass-type carbon precursor. A small amount of potassium citrate as a chemical activator coupled with CO2 activation at 700 degrees C afforded carbons with higher specific surface area (1256 m(2) g(-1)) and larger micropore volume (0.54 cm(3) g(-1)) as compared to the carbons activated with both PC and ZnCl2. The high microporosity of the PC-activated carbon materials, significantly enlarged after CO2 activation from micropore volume of 0.16 to 0.54 cm(3) g(-1) makes them favorable for CO2 adsorption, as evidenced by high adsorption capacity of 3.55 mmol g 1 at ambient conditions (25 degrees C, 1 bar). This study shows that the solvent-free mechanochemical processing of tannin in the presence of PC is a promising method for obtaining highly microporous carbon materials.
More
Translated text
Key words
carbon materials,mechanochemical synthesis,tannin,potassium citrate,CO<sub>2</sub> capture
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined