Improving Multi-Dimensional Data Formats, Access, and Assimilation Tools for the Twenty-First Century

arXiv (Cornell University)(2023)

引用 0|浏览23
暂无评分
摘要
Heliophysics image data largely relies on a forty-year-old ecosystem built on the venerable Flexible Image Transport System (FITS) data standard. While many in situ measurements use newer standards, they are difficult to integrate with multiple data streams required to develop global understanding. Additionally, most data users still engage with data in much the same way as they did decades ago. However, contemporary missions and models require much more complex support for 3D multi-parameter data, robust data assimilation strategies, and integration of multiple individual data streams required to derive complete physical characterizations of the Sun and Heliospheric plasma environment. In this white paper we highlight some of the 21$^\mathsf{st}$ century challenges for data frameworks in heliophysics, consider an illustrative case study, and make recommendations for important steps the field can take to modernize its data products and data usage models. Our specific recommendations include: (1) Investing in data assimilation capability to drive advanced data-constrained models, (2) Investing in new strategies for integrating data across multiple instruments to realize measurements that cannot be produced from single observations, (3) Rethinking old data use paradigms to improve user access, develop deep understanding, and decrease barrier to entry for new datasets, and (4) Investing in research on data formats better suited for multi-dimensional data and cloud-based computing.
更多
查看译文
关键词
assimilation tools
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要