Revealing the bonding nature and electronic structure of early transition metal dihydrides

arXiv (Cornell University)(2023)

引用 0|浏览27
暂无评分
摘要
Hydrogen as a fuel plays a crucial role in driving the transition to net zero greenhouse gas emissions. To realise its potential, obtaining a means of efficient storage is paramount. One solution is using metal hydrides, owing to their good thermodynamical absorption properties and effective hydrogen storage. Although metal hydrides appear simple compared to many other energy materials, understanding the electronic structure and chemical environment of hydrogen within them remains a key challenge. This work presents a new analytical pathway to explore these aspects in technologically relevant systems using Hard X-ray Photoelectron Spectroscopy (HAXPES) on thin films of two prototypical metal dihydrides: YH$_{2-\delta}$ and TiH$_{2-\delta}$. By taking advantage of the tunability of synchrotron radiation, a non-destructive depth profile of the chemical states is obtained using core level spectra. Combining experimental valence band spectra collected at varying photon energies with theoretical insights from density functional theory (DFT) calculations, a description of the bonding nature and the role of d versus sp contributions to states near the Fermi energy are provided. Moreover, a reliable determination of the enthalpy of formation is proposed by using experimental values of the energy position of metal s band features close to the Fermi energy in the HAXPES valence band spectra.
更多
查看译文
关键词
electronic structure,transition metal,bonding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要