Untargeted mass spectrometry-based metabolomics approach unveils biochemical changes in compound probiotic fermented milk during fermentation

npj Science of Food(2023)

引用 1|浏览9
暂无评分
摘要
Probiotic functional products have drawn wide attention because of their increasing popularity. However, few studies have analyzed probiotic-specific metabolism in the fermentation process. This study applied UPLC-QE-MS-based metabolomics to track changes in the milk metabolomes in the course of fermentation by two probiotic strains, Lacticaseibacillus paracasei PC-01 and Bifidobacterium adolescentis B8589. We observed substantial changes in the probiotic fermented milk metabolome between 0 and 36 h of fermentation, and the differences between the milk metabolomes at the interim period (36 h and 60 h) and the ripening stage (60 h and 72 h) were less obvious. A number of time point-specific differential metabolites were identified, mainly belonging to organic acids, amino acids, and fatty acids. Nine of the identified differential metabolites are linked to the tricarboxylic acid cycle, glutamate metabolism, and fatty acid metabolism. The contents of pyruvic acid, γ-aminobutyric acid, and capric acid increased at the end of fermentation, which can contribute to the nutritional quality and functional properties of the probiotic fermented milk. This time-course metabolomics study analyzed probiotic-specific fermentative changes in milk, providing detailed information of probiotic metabolism in a milk matrix and the potential beneficial mechanism of probiotic fermented milk.
更多
查看译文
关键词
compound probiotic fermented milk,metabolomics approach,fermentation,biochemical changes,spectrometry-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要