From ergodicity to many-body localization in a one-dimensional interacting non-Hermitian Stark system

Jinghu Liu,Zhihao Xu

PHYSICAL REVIEW B(2023)

引用 0|浏览2
暂无评分
摘要
Recent studies on disorder-induced many-body localization (MBL) in non-Hermitian quantum systems have attracted great interest. However, the non-Hermitian disorder-free MBL still needs to be clarified. We consider a one-dimensional interacting Stark model with nonreciprocal hoppings having time-reversal symmetry, the properties of which are boundary dependent. Under periodic boundary conditions (PBCs), such a model exhibits three types of phase transitions: the real-complex transition of eigenenergies, the topological phase transition, and the non-Hermitian Stark MBL transition. The real-complex and topological phase transitions occur at the same point in the thermodynamic limit but do not coincide with the non-Hermitian Stark MBL transition, which is quite different from the non-Hermitian disordered cases. By the level statistics, the system transitions from the Ginibre ensemble (GE) to the Gaussian orthogonal ensemble (GOE) to the Possion ensemble with the increase of the linear tilt potential's strength. The real-complex transition of the eigenvalues is accompanied by the GE-to-GOE transition in the ergodic regime. Moreover, the second transition of the level statistics corresponds to the occurrence of non-Hermitian Stark MBL. We demonstrate that the non-Hermitian Stark MBL is robust and shares many similarities with disorder-induced MBL, which several existing characteristic quantities of the spectral statistics and eigenstate properties can confirm. The dynamical evolutions of the entanglement entropy and the density imbalance can distinguish the real-complex and Stark MBL transitions. Finally, we find that our system under open boundary conditions lacks a real-complex transition, and the transition of non-Hermitian Stark MBL is the same as that under PBCs.
更多
查看译文
关键词
ergodicity,localization,many-body,one-dimensional,non-hermitian
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要