200 Gb/s Optical-Amplifier-Free IM/DD Transmissions Using a Directly Modulated O-Band DFB plus R Laser Targeting LR Applications

JOURNAL OF LIGHTWAVE TECHNOLOGY(2023)

引用 0|浏览11
暂无评分
摘要
We experimentally demonstrate an O-band single-lane 200 Gb/s intensity modulation direct detection (IM/DD) transmission system using a low-chirp, broadband, and high-power directly modulated laser (DML). The employed laser is an isolator-free packaged module with over 65-GHz modulation bandwidth enabled by a distributed feedback plus passive waveguide reflection (DFB+R) design. We transmit high baud rate signals over 20-km standard single-mode fiber (SSMF) without using any optical amplifiers and demodulate them with reasonably low-complexity digital equalizers. We generate and detect up to 170 Gbaud non-return-to-zero on-off-keying (NRZ-OOK), 112 Gbaud 4-level pulse amplitude modulation (PAM4), and 100 Gbaud PAM6 in the optical back-to-back configuration. After transmission over the 20-km optical-amplifier-free SSMF link, up to 150 Gbaud NRZ-OOK, 106 Gbaud PAM4, and 80 Gbaud PAM6 signals are successfully received and demodulated, achieving bit error rate (BER) performance below the 6.25%-overhead hard-decision (HD) forward-error-correction code (FEC) limit. The demonstrated results show the possibility of meeting the strict requirements towards the development of 200 Gb/s/lane IM/DD technologies, targeting 800 Gb/s and 1.6 Tb/s LR applications.
更多
查看译文
关键词
Optical amplifiers,Modulation,Optical pulses,Optical modulation,Laser modes,Bandwidth,Measurement by laser beam,Direct modulation,distributed-feedback laser,on-off keying,pulse amplitude modulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要