Data from Sensitivity to <i>BUB1B</i> Inhibition Defines an Alternative Classification of Glioblastoma

crossref(2023)

引用 0|浏览0
暂无评分
摘要
Abstract

Glioblastoma multiforme (GBM) remains a mainly incurable disease in desperate need of more effective treatments. In this study, we develop evidence that the mitotic spindle checkpoint molecule BUB1B may offer a predictive marker for aggressiveness and effective drug response. A subset of GBM tumor isolates requires BUB1B to suppress lethal kinetochore–microtubule attachment defects. Using gene expression data from GBM stem-like cells, astrocytes, and neural progenitor cells that are sensitive or resistant to BUB1B inhibition, we created a computational framework to predict sensitivity to BUB1B inhibition. Applying this framework to tumor expression data from patients, we stratified tumors into BUB1B-sensitive (BUB1BS) or BUB1B-resistant (BUB1BR) subtypes. Through this effort, we found that BUB1BS patients have a significantly worse prognosis regardless of tumor development subtype (i.e., classical, mesenchymal, neural, proneural). Functional genomic profiling of BUB1BR versus BUB1BS isolates revealed a differential reliance of genes enriched in the BUB1BS classifier, including those involved in mitotic cell cycle, microtubule organization, and chromosome segregation. By comparing drug sensitivity profiles, we predicted BUB1BS cells to be more sensitive to type I and II topoisomerase inhibitors, Raf inhibitors, and other drugs, and experimentally validated some of these predictions. Taken together, the results show that our BUB1BR/S classification of GBM tumors can predict clinical course and sensitivity to drug treatment. Cancer Res; 77(20); 5518–29. ©2017 AACR.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要